

Available online at www.sciencedirect.com

JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL

Journal of Molecular Catalysis A: Chemical 226 (2005) 285-290

www.elsevier.com/locate/molcata

Effects of support modification on Nb_2O_5/α -Al₂O₃ catalyst for ethylene oxide hydration

Yingcheng Li^{a,b}, Shirun Yan^{a,*}, Weimin Yang^b, Zaiku Xie^b, Qingling Chen^b, Bin Yue^a, Heyong He^{a,*}

^a Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China ^b Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China

Received 20 August 2004; received in revised form 26 October 2004; accepted 28 October 2004

Abstract

Effect of MgAl₂O₄ on the structure, acidity as well as the catalytic performance of Nb₂O₅/ α -Al₂O₃ catalyst for ethylene oxide hydration was studied using IR, XRD, NH₃-TPD, CO₂-TPD and catalytic reaction. Modification of α -Al₂O₃ support with MgAl₂O₄ led to an increase in both basicity and mechanical strength of the support. As a result, the density and strength of the acidity of the niobium oxide catalyst supported on the MgAl₂O₄ modified α -Al₂O₃ reduced in comparison with that supported on the pure α -Al₂O₃. The acidity of 10% Nb₂O₅/MgAl₂O₄/ α -Al₂O₃ decreased with increasing loading of MgAl₂O₄. Catalytic test showed that EO conversion decreased monotonously with increasing MgAl₂O₄ loading, whereas the selectivity to MEG exhibited a maximum of 90.6% at MgAl₂O₄ loading of 2.23%. In terms of MEG yield, optimal MgAl₂O₄ loading should be around 2%. Durability test demonstrated that 10% Nb₂O₅/MgAl₂O₄/ α -Al₂O₃ catalyst exhibited excellent stability within 1000 h time-on-stream.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Ethylene oxide; Hydration; Niobia; MgAl₂O₄; Support; Modification

1. Introduction

Niobium compounds are interesting and important catalytic materials for various reactions. Hydrated niobium pentoxide (Nb₂O₅·*n*H₂O), which is called niobic acid, has an acid strength corresponding to that of 70% H₂SO₄ when calcined at relatively low temperature (100–300 °C). The acidity of niobic acid decreases with increasing calcination temperatures and becomes almost neutral after calcination at 500 °C [1]. The strong acidity and high structural stability in water make niobic acid as a water-tolerant solid acid catalyst for reactions with water participation or liberation, such as dehydration, esterification and hydration of small olefins [2–6].

* Corresponding authors. Tel.: +86 21 65643916/3792x4; fax: +86 21 65642978/1740.

E-mail addresses: sryan@fudan.edu.cn (S. Yan), heyonghe@fudan.edu.cn (H. He). Also, niobic acid has been used for the ring-opening reaction of 1,2-aromatic epoxide, such as isomerization and solvolysis of phenyloxirane [7–9].

In our previous studies [10,11], the niobium oxide supported on α -Al₂O₃ prepared by chemical vapor deposition and impregnation was studied for hydration of ethylene oxide (EO) to produce monoethylene glycol (MEG). It was found that the yield of MEG over the supported niobium oxide calcined at 400 °C was close to that of Amberlite IR, Nafion XR (6%)/SiO₂ and sulfuric acid, but much higher than that of AlPO₄–Cu(NO₃)₂ and HZSM-5. A comparison of niobic acid with the niobium oxide supported on α -Al₂O₃ calcined at 400 °C showed that both catalysts have near 100% of EO conversion at reaction temperature of 150 °C and H₂O/EO ratio of 22. However, the latter gave a MEG selectivity of 89% compared with 83% that over niobic acid. The supported niobium oxide also exhibited excellent stability within 1000 h time-on-stream in comparison with the niobic acid catalyst

^{1381-1169/\$ –} see front matter 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2004.10.047

over which deactivation started after 600 h. The characterizations demonstrated that the acidity of the α -Al₂O₃ supported niobium oxide calcined at 400 °C was weaker than that of the niobic acid. A correlation of catalytic behavior with acidity indicated that the conversion of EO was proportional to the acid density, while the selectivity to MEG and durability of the catalyst decreased with increasing of the acidic strength of the catalyst. The strong acidity of the catalyst leads to the re-adsorption and secondary reaction of the primary product of MEG, resulting in a decrease of the MEG selectivity and in the formation of polymerized glycols. The accumulation of the polymerized glycols on the surface may block the acidic sites, leading to the deactivation of the catalyst. Therefore, there should be a compromise of the strength with the density of acid sites of the catalyst to achieve an optimal yield of MEG.

Magnesia-alumina spinel, MgAl₂O₄, has remarkable chemical stability and thermal stability and thus has been used as an important catalytic material [12,13]. In this paper, MgAl₂O₄ was used to modify α -Al₂O₃ as well as the Nb₂O₅/ α -Al₂O₃ catalyst. Effects of MgAl₂O₄ on the acid–base properties of Al₂O₃ and Nb₂O₅/ α -Al₂O₃ catalyst and on the catalytic performance for ethylene oxide hydration were investigated.

2. Experimental

2.1. Catalysts preparation

The supported niobia catalysts were prepared via the following steps. Pseudo-boehmite (Condea Chemie, Pural-SB) and extruded, dried at 120 °C and calcined at 1400 °C under static air for 4 h to form α -Al₂O₃ support. The α -Al₂O₃ was ground and sieved to pellets with 0.8-1.0 mm diameter and then impregnated with an aqueous solution containing required amount of Mg(NO₃)₂ and Al(NO₃)₃, dried at 120 °C and calcined at 1400 °C for another 4 h to form the modified MgAl₂O₄/ α -Al₂O₃ support. The catalysts were prepared under vacuum by impregnating the modified MgAl₂O₄/ α -Al₂O₃ support with an aqueous solution of niobic acid (Companhia Brasileira de Metalurgiae Mineracao, batch AD-2352) containing $1.8 \text{ mol } L^{-1}$ oxalic acid. The sample was then dried at 120 °C for 2 h and subsequently calcined at 400 °C in a quartz tube for 2 h under a flow of nitrogen containing 5 vol.% H₂ for 2 h, and finally activated at 400 °C under nitrogen for another 2 h.

The Nb₂O₅/ α -Al₂O₃ catalyst was prepared by impregnating α -Al₂O₃ with an aqueous solution of niobic acid as described in our previous publication [10].

2.2. Catalyst characterization

Infrared (IR) spectra of pyridine adsorption were recorded on a Nicolet Nexus 470 FT-IR spectrometer with 4 cm^{-1} resolution. The sample disc containing catalyst and KBr with 1:1 in weight ratio was heated to $180 \,^{\circ}\text{C}$ and evacuated under vacuum for 4 h, then cooled down to room temperature and exposed to 500 Pa of pyridine vapor for 15 min. The excess amount of pyridine was removed by evacuation until vacuum returned to the level of 1 Pa. The spectra of adsorbed pyridine were recorded at room temperature and $150 \,^{\circ}$ C in vacuum.

X-ray diffraction (XRD) patterns were recorded using a Rigaku D/MAX-1400 diffractometer with a Cu target, a voltage of 40 kV and a current of 40 mA.

Temperature-programmed desorption of ammonia (NH₃-TPD) was carried out in a flow system. The samples were pretreated under a helium flow (30 mL/min) at $400 \,^{\circ}\text{C}$ for 1 h. Ammonia (10% in helium) was adsorbed at $100 \,^{\circ}\text{C}$ for 1 h and then the temperature was raised to $400 \,^{\circ}\text{C}$ at a rate of $20 \,^{\circ}\text{C/min}$ under a helium stream. Desorption of ammonia was monitored by thermal conductivity detector (TCD). The amount of adsorbed ammonia was absorbed with sulfuric acid solution and quantified by NaOH titration.

Temperature-programmed desorption of carbon dioxide (CO₂-TPD) was carried out in a flow system. The samples were pretreated under helium flow (30 mL/min) at 400 °C for 1 h. Carbon dioxide (10% in helium) was adsorbed at room temperature for 1 h and then the temperature was raised to 500 °C at a rate of 20 °C/min under a helium stream. The amount of desorbed carbon dioxide was detected by TCD.

The analysis of niobium and iron contents in the effluent was performed on BAIRD PS-6 ICP spectrometer.

Pore volume, pore diameter and surface area were measured with mercury filling method on CORETEST SYS-TEMS MIS-621 apparatus.

The mechanical strength (grain crushing strength) was measured with a DL-II mechanical tester manufactured by Dalian Research Institute of Chemical Engineering. The measurement was carried out on a sufficient number of grains in order to obtain reliable results.

2.3. Catalytic reaction

The reaction of ethylene oxide hydration was carried out over a fixed-bed reactor with an inner diameter of 10 mm and length of 300 mm at temperature of $150 \,^{\circ}$ C, pressure of 1.5 MPa, molar ratio of H₂O/EO of 22 and LHSV of $30 \,h^{-1}$. In a typical experiment, 10 mL of catalyst was loaded. The products were analyzed on an HP 6890 gas chromatograph with an HP-INNOWAX column and a flame ionization detector. The quantification was made by an internal standard method using ethylene glycol monobutyl ether (EGME) as the internal standard.

3. Results and discussion

3.1. Structure and textural properties of α -Al₂O₃ support modified with MgAl₂O₄

XRD patterns of the α -Al₂O₃ support modified with different loadings of MgAl₂O₄ are shown in Fig. 1. Only

Fig. 1. XRD patterns of α -Al₂O₃ modified with different MgAl₂O₃ loadings: (\blacksquare) MgAl₂O₄; (\blacklozenge) α -Al₂O₃.

diffraction peaks of α -Al₂O₃ were observed at MgAl₂O₄ loading of 0.23%. The diffraction peaks with 2 θ at 36.85°, 44.83° and 65.24° which are assignable to (3 1 1), (4 0 0) and (4 4 0) crystal planes of of MgAl₂O₄ (JCPDS No. 21-1152), respectively, were observed in the sample with the MgAl₂O₄ loading of 1.13%. The intensity of the MgAl₂O₄ peaks increased with further increasing MgAl₂O₄ loadings, indicating that the spinel phase MgAl₂O₄ was formed on the surface of α -Al₂O₃.

Table 1 shows the effect of MgAl₂O₄ modification on the mechanical strength and porous properties of the α -Al₂O₃ support. Mechanical strength increased significantly with increasing MgAl₂O₄ loadings, while the pore volume, surface areas and pore diameters decreased with increasing MgAl₂O₄ loadings. This is easily understood because the deposition of MgAl₂O₄ on the inner wall of α -Al₂O₃ reduces the pore volume and surface area of the support. Meanwhile, the increase of wall thickness may lead to an increase of the mechanical strength of the support.

3.2. Effect of $MgAl_2O_4$ modification on the acid-base properties of α - Al_2O_3

Fig. 2 shows the CO₂-TPD profiles of α -Al₂O₃ support modified with different amount of MgAl₂O₄, in which the signal was normalized based on unit mass. No desorption was detected when MgAl₂O₄ loading was below 2.23%. One broad desorption peak between 90 and 200 °C was observed

Fig. 2. CO_2 -TPD profiles of α -Al₂O₃ modified with different MgAl₂O₄ loadings.

at the MgAl₂O₄ loading of 2.23%. On increasing MgAl₂O₄ loading up to 4.35%, two desorption peaks at 158 and 226 °C appeared, indicating that two types of basic site with different strengths were formed on the modified α -Al₂O₃ surface. In comparison with the pure α -Al₂O₃ support that has no CO₂-TPD peaks, it is found that the modification of α -Al₂O₃ with MgAl₂O₄ increased the basicity of the support. NH₃-TPD experiment showed that no desorption of NH₃ over both α -Al₂O₃ and MgAl₂O₄ modified α -Al₂O₃ in the temperature range studied, indicating no acidic sites on the supports.

3.3. Effect of $MgAl_2O_4$ modification on the acidity of the Nb_2O_5/α - Al_2O_3 catalysts

IR spectra after pyridine adsorption and desorption at room temperature and 150 °C and the NH₃-TPD experiments were carried out to investigate the effect of the support modification with MgAl₂O₄ on the acidity of the Nb₂O₅/ α -Al₂O₃ catalyst. The IR results are shown in Figs. 3 and 4. The absorptions at ~1610 and ~1450 cm⁻¹ were assigned to pyridine adsorbed on Lewis acid sites (LAS), and the absorption at 1550 cm⁻¹ accompanied by other peaks near 1640–1620 cm⁻¹ was assigned to pyridine adsorbed on Brønsted acid sites (BAS). The wavenumber of the band around 1610 cm⁻¹ gives information about the strength of LAS, and the intensity of the band at ~1450 cm⁻¹ is related to the number of LAS [14,15]. Fig. 3 shows the spectra after pyridine desorption at room temperature. No IR absorption band was observed for α -Al₂O₃ support. For the

Table 1		
Effect of MgAl ₂ O ₄	modification on the characters	of α-Al ₂ O ₃

Samples	Mechanical strength (N cm ⁻¹)	Pore volume (cm ³ g ^{-1})	Surface area $(m^2 g^{-1})$	Pore diameter (µm)
α-Al ₂ O ₃	11.43	0.702	0.45	8.830
0.23% MgAl ₂ O ₄ /α-Al ₂ O ₃	12.17	0.601	0.44	7.918
1.13% MgAl ₂ O ₄ /α-Al ₂ O ₃	14.01	0.595	0.40	6.646
2.23% MgAl ₂ O ₄ / α -Al ₂ O ₃	16.73	0.515	0.36	5.432
4.35% MgAl ₂ O ₄ /α-Al ₂ O ₃	19.75	0.418	0.32	2.298

Fig. 3. IR spectra after pyridine desorption at room temperature on (a) α -Al₂O₃, (b) niobic acid, (c) 10% Nb₂O₅/ α -Al₂O₃, and (d) 10% Nb₂O₅/2.23% MgAl₂O₄/ α -Al₂O₃.

Nb₂O₅/ α -Al₂O₃ and Nb₂O₅/MgAl₂O₄/ α -Al₂O₃ catalysts, only the band around 1445 cm⁻¹ was observed. For niobic acid, however, absorption bands at 1632 and 1536 cm⁻¹ corresponding to pyridine species bound to BAS and bands at 1605, 1574, 1485 and 1444 cm⁻¹ corresponding to pyridine species bound to LAS were clearly observed. After evacuation at 150 °C the absorption at ca. 1444 cm⁻¹ disappeared for both Nb₂O₅/ α -Al₂O₃ and Nb₂O₅/MgAl₂O₄/ α -Al₂O₃ catalysts as shown in Fig. 4. However, for niobic acid the bands at 1636, 1608, 1574, 1537, 1487 and 1444 cm⁻¹ still appeared. The IR experiments indicate that the surface of α -Al₂O₃ was nearly neutral, in accordance with the CO₂-TPD experiment. Niobic acid demonstrated both Brønsted and Lewis acidities. In contrast, Nb₂O₅ supported on α -Al₂O₃ and on MgAl₂O₄ modified α -Al₂O₃ were found to have only Lewis acidic sites.

FT-IR could not give any valuable information on the strength of acidity effected by MgAl₂O₄, as no absorption

Fig. 4. IR spectra after pyridine desorption at 150 °C on (a) niobic acid, (b) 10% Nb₂O₅/ α -Al₂O₃, and (c) 10% Nb₂O₅/2.23% MgAl₂O₄/ α -Al₂O₃.

Fig. 5. NH₃-TPD profiles of 10% Nb₂O₅/MgAl₂O₄/ α -Al₂O₃ catalysts with different MgAl₂O₃ contents.

bands were registered at ca. 1610 cm^{-1} region [14] for both Nb₂O₅/ α -Al₂O₃ and Nb₂O₅/MgAl₂O₄/ α -Al₂O₃ catalysts. However, it is clear that the acidity of Nb₂O₅ supported either on α -Al₂O₃ or on the MgAl₂O₄ modified α -Al₂O₃ was much weaker than that of the niobic acid.

Fig. 5 shows the NH₃-TPD profiles of Nb₂O₅/MgAl₂O₄/ α -Al₂O₃ catalysts with different MgAl₂O₄ loadings. Only one broad desorption peak was observed in all the catalysts. The temperature of the desorption peak shifted from 285 °C of unpromoted Nb₂O₅/ α -Al₂O₃ (not shown) to 283 and 269 °C with increasing MgAl₂O₄ loadings from 0.23% to 4.35%, respectively. This indicates that mainly weak acidic sites existed on the surface of Nb₂O₅/MgAl₂O₄/ α -Al₂O₃ and the strength of acidity of the catalysts decreased with increasing MgAl₂O₄ loadings.

The concentration of acidic centers of the catalysts with MgAl₂O₄ loadings of 0, 0.23, 1.13, 2.23, and 4.35 wt.% determined by NaOH titration of desorbed NH₃ were 161,157, 147, 129 and 109 μ mol/g, respectively. The decrement of the acid density with increasing the loading of MgAl₂O₄ may be caused by the basic nature of MgAl₂O₄ as observed by CO₂-TPD, as MgAl₂O₄ may partially neutralize the acidic sites of niobium oxide adhered to it.

3.4. Effect of $MgAl_2O_4$ loadings on the catalytic performance

Fig. 6 shows the effect of MgAl₂O₄ loadings on the catalytic performance of Nb₂O₅/MgAl₂O₄/ α -Al₂O₃ for EO hydration. EO conversion decreased with the addition of MgAl₂O₄ and with increasing the loading of MgAl₂O₄ in the range studied, e.g. it decreased from 99.8% of unpromoted Nb₂O₅/ α -Al₂O₃ to 99.5% at MgAl₂O₄ loading of 2.23%. The selectivity to MEG was slightly increased with MgAl₂O₄ loadings below 2.23%, and achieved a maximum of 90.6% at MgAl₂O₄ loading of 2.23% in comparison with that of 89.8% for the pure α -Al₂O₃ supported catalyst. On further increas-

Fig. 6. Effect of MgAl_2O_4 loadings on the catalytic properties of $Nb_2O_5/MgAl_2O_4/\alpha$ -Al_2O_3 catalyst.

ing the MgAl₂O₄ loadings above 2.23%, MEG selectivity decreased noticeably. In order to better understand the influence of support modification on MEG selectivity, additional experiment was carried out, in which the reaction temperature was raised by 5 °C for 10% Nb₂O₅/2.23% MgAl₂O₄/ α -Al₂O₃ catalyst to keep the EO conversion same as that over 10% Nb₂O₅/ α -Al₂O₃ catalyst. The results showed that at the same EO conversion of 99.8% the MEG selectivity over 10% $Nb_2O_5/2.23\%$ $MgAl_2O_4/\alpha\text{-}Al_2O_3$ and 10% $Nb_2O_5/\alpha\text{-}Al_2O_3$ catalysts were 90.7% and 89.8%, respectively. The decrement of EO conversion with increasing MgAl₂O₄ loading may be interpreted by the decreasing of acid density as observed by NH₃-TPD, because the catalytic activity of acid catalyzed hydration is proportional to the density of the active acidic sites. The reason for the maximum MEG selectivity appearing at MgAl₂O₄ loading of 2.23% may be explained as follows. Depending on the reaction conditions and the catalyst used, the primary product of hydration may preferentially desorbs from the active sites or remains on the active sites. If the primary product desorbs from the catalyst surface, the MEG would be produced; if the MEG remains on active sites, the polymerization or other secondary reactions possibly occur, and thus the selectivity to MEG would decrease. It is generally accepted that under the same reaction conditions the higher strength of acidity may favor the adsorption of MEG. As the acidity strength of the catalyst decreases with increasing the loading of $MgAl_2O_4$ up to 2.23%, the adsorption of the primary product of MEG becomes weaker. Hence, the selectivity to MEG increases. When the acidity strength of the catalyst decreases further by further increasing the loading of MgAl₂O₄ from 2.23%, the contribution of non-catalytic hydration to the overall reaction and to total products would increase. Therefore, the selectivity to MEG decreases, as the selectivity of non-catalytic hydration is known to be significantly lower than that of the acid catalyzed hydration. The above results indicated that modification of α -Al₂O₃ with certain amount of MgAl₂O₄ led to a compromise between the

Fig. 7. Stability test of 10% Nb₂O₅/2.23% MgAl₂O₄/α-Al₂O₃ catalyst.

strength and density of the acidity of $Nb_2O_5/MgAl_2O_4/\alpha$ - Al_2O_3 that gives rise to an optimal catalytic performance.

3.5. Stability of supported niobium oxide catalyst

Durability test of the Nb₂O₅/MgAl₂O₄/ α -Al₂O₃ catalyst was carried out over a period of 1000 h, as shown in Fig. 7. The selectivity of MEG remained almost unchanged at ca. 91% within 1000 h time-on-stream and no deactivation was observed during testing. The effluent was monitored with ICP to check whether there is the elution of niobia species or iron species of stainless steel reactor. No iron or niobia ion was found within the detection limit of 10^{-6} g/mL. This shows that the niobium oxide supported on MgAl₂O₄ modified α -Al₂O₃ had no leaching and no corrosion to the stainless reactor under harsh hydrothermal circumstance during EO hydration.

4. Conclusions

Modification of α -Al₂O₃ support with MgAl₂O₄ led to an increase in basicity and mechanical strength of the support. The catalyst prepared with MgAl₂O₄ modified α -Al₂O₃ support showed less density and strength of acidity than that of the pure α -Al₂O₃ supported catalyst. The acidity of the Nb2O5/MgAl2O4/a-Al2O3 decreased with increasing loading of MgAl₂O₄ and was much weaker than that of niobic acid. Catalytic test demonstrated that EO conversion decreased monotonously with increasing loading of MgAl₂O₄, whereas the selectivity to MEG showed a maximum of 90.6% at MgAl₂O₄ loading of 2.23%. In terms of MEG yield, optimal MgAl₂O₄ loadings should be around 2%. Durability test demonstrated that Nb₂O₅/MgAl₂O₄/α-Al₂O₃ catalyst exhibited excellent stability within 1000 h time-on-stream. The present investigation showed that there should be a compromise of the strength with density of the acidity of the catalyst to achieve the optimal catalytic performance.

Acknowledgements

Supplying of niobic acid by CBMM Int. Ltd. is gratefully acknowledged. This work was financially supported by the National Basic Research Program of China (2003CB615807), the NSF of China (20005310) and the Shanghai Science and Technology Committee (03DJ14004).

References

- [1] K. Tanabe, Catal. Today 78 (2003) 65.
- [2] K. Tanabe (Ed.), Catal. Today 28 (1996).
- [3] I. Nowak, M. Ziolek, Chem. Rev. 99 (1999) 3603.
- [4] Y. Izumi, Catal. Today 33 (1997) 390.
- [5] T. Okuhara, Chem. Rev. 102 (2002) 3641.

- [6] T. Ushikubo, Catal. Today 57 (2000) 331.
- [7] T. Hanaoka, K. Takeuchi, T. Matsuzaki, Y. Sugi, Catal. Today 8 (1990) 123.
- [8] T. Hanaoka, K. Takeuchi, T. Matsuzaki, Y. Sugi, Catal. Lett. 5 (1990) 13.
- [9] T. Hanaoka, K. Takeuchi, T. Matsuzaki, Y. Sugi, Jpn. Kokai Tokkyo Koho JP 6,179,633 (1994).
- [10] Y.C. Li, S.R. Yan, W.M. Yang, Z.K. Xie, Q.L. Chen, B. Yue, H.Y. He, Appl. Catal. A: Gen. 272 (2004) 305.
- [11] Y.C. Li, B. Yue, S.R. Yan, W.M. Yang, Z.K. Xie, Q.L. Chen, H.Y. He, Catal. Lett. 95 (2004) 163.
- [12] G. Xanthopoulou, Appl. Catal. A: Gen. 182 (1999) 285.
- [13] J. Sehested, A. Carlsson, T.V.W. Janssens, A.K. Datye, J. Catal. 197 (2001) 200.
- [14] M. Ziolek, I. Nowak, J.C. Lavalley, Catal. Lett. 45 (1997) 259.
- [15] S. Khabtou, T. Chevreau, J.C. Lavalley, Micropor. Mater. 3 (1994) 133.